Portal:Mathematics
The Mathematics Portal
Mathematics is the study of numbers, quantity, space, pattern, structure, and change. Mathematics is used throughout the world as an essential tool in many fields, including natural science, engineering, medicine, and the social sciences. Applied mathematics, the branch of mathematics concerned with application of mathematical knowledge to other fields, inspires and makes use of new mathematical discoveries and sometimes leads to the development of entirely new mathematical disciplines, such as statistics and game theory. Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, and practical applications for what began as pure mathematics are often discovered.
Selected article
The second Borel-Cantelli lemma implies that a chimpanzee like this one typing at random will almost surely produce the complete works of Shakespeare, given enough time. Image credit: User:Chris 73 |
The infinite monkey theorem states that a monkey hitting keys at random on a typewriter keyboard for an infinite amount of time will almost surely type or create a particular chosen text, such as the complete works of William Shakespeare. Note that "almost surely" in this context is a mathematical term with a specific meaning, and that the "monkey" is not an actual monkey; rather, it is a vivid metaphor for an abstract device that produces an unending, random sequence of letters.
The theorem graphically illustrates the perils of reasoning about infinity by imagining a vast but finite number. If every atom in the visible universe were a monkey producing a billion keystrokes a second from the Big Bang until today, it is still very unlikely that any monkey would get as far as "slings and arrows" in Hamlet's most famous soliloquy. The infinite monkey theorem is straightforward to prove, even without appealing to more advanced results.
View all selected articles | Read More... |
Selected image
Here a polyhedron called a truncated icosahedron (left) is compared to the classic Adidas Telstar–style football (or soccer ball). The familiar 32-panel ball design, consisting of 12 black pentagonal and 20 white hexagonal panels, was first introduced by the Danish manufacturer Select Sport, based loosely on the geodesic dome designs of Buckminster Fuller; it was popularized by the selection of the Adidas Telstar as the official match ball of the 1970 FIFA World Cup. The polyhedron is also the shape of the Buckminsterfullerene (or "Buckyball") carbon molecule initially predicted theoretically in the late 1960s and first generated in the laboratory in 1985. Like all polyhedra, the vertices (corner points), edges (lines between these points), and faces (flat surfaces bounded by the lines) of this solid obey the Euler characteristic, V − E + F = 2 (here, 60 − 90 + 32 = 2). The icosahedron from which this solid is obtained by truncating (or "cutting off") each vertex (replacing each by a pentagonal face), has 12 vertices, 30 edges, and 20 faces; it is one of the five regular solids, or Platonic solids—named after Plato, whose school of philosophy in ancient Greece held that the classical elements (earth, water, air, fire, and a fifth element called aether) were associated with these regular solids. The fifth element was known in Latin as the "quintessence", a hypothesized uncorruptible material (in contrast to the other four terrestrial elements) filling the heavens and responsible for celestial phenomena. That such idealized mathematical shapes as polyhedra actually occur in nature (e.g., in crystals and other molecular structures) was discovered by naturalists and physicists in the 19th and 20th centuries, largely independently of the ancient philosophies.
Did you know…
- ...that the Gudermannian function relates the regular trigonometric functions and the hyperbolic trigonometric functions without the use of complex numbers?
- ...that a ball can be cut up and reassembled into two balls the same size as the original (Banach-Tarski paradox)?
- ...that it is impossible to devise a single formula involving only polynomials and radicals for solving an arbitrary quintic equation?
- ...that Euler found 59 more amicable numbers while for 2000 years, only 3 pairs had been found before him?
- ...that you cannot knot strings in 4-dimensions? You can, however, knot 2-dimensional surfaces like spheres.
- ...that there are 6 unsolved mathematics problems whose solutions will earn you one million US dollars each?
WikiProjects
The Mathematics WikiProject is the center for mathematics-related editing on Wikipedia. Join the discussion on the project's talk page.
Project pages
Essays
Subprojects
Related projects
Things you can do
Subcategories
Algebra | Arithmetic | Analysis | Complex analysis | Applied mathematics | Calculus | Category theory | Chaos theory | Combinatorics | Dynamic systems | Fractals | Game theory | Geometry | Algebraic geometry | Graph theory | Group theory | Linear algebra | Mathematical logic | Model theory | Multi-dimensional geometry | Number theory | Numerical analysis | Optimization | Order theory | Probability and statistics | Set theory | Statistics | Topology | Algebraic topology | Trigonometry | Linear programming
Mathematics (books) | History of mathematics | Mathematicians | Awards | Education | Literature | Notation | Organizations | Theorems | Proofs | Unsolved problems
Topics in mathematics
General | Foundations | Number theory | Discrete mathematics |
---|---|---|---|
| |||
Algebra | Analysis | Geometry and topology | Applied mathematics |
Index of mathematics articles
ARTICLE INDEX: | A B C D E F G H I J K L M N O P Q R S T U V W X Y Z (0–9) |
MATHEMATICIANS: | A B C D E F G H I J K L M N O P Q R S T U V W X Y Z |
Related portals
Algebra | Analysis | Category theory |
Computer science |
Cryptography | Discrete mathematics |
Logic | Mathematics | Number theory |
Physics | Science | Set theory | Statistics |
In other Wikimedia projects