Before the featured portal process ceased in 2017, this had been designated as a featured portal.
Page semi-protected


From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

Main page   Categories & Main topics   Related portals & WikiProjects   Things you can do

Science portal

Science (from Latin scientia, meaning "knowledge") is a systematic enterprise that builds and organizes knowledge in the form of testable explanations and predictions about the universe.

The earliest roots of science can be traced to Ancient Egypt and Mesopotamia in around 3500 to 3000 BCE. Their contributions to mathematics, astronomy, and medicine entered and shaped Greek natural philosophy of classical antiquity, whereby formal attempts were made to explain events of the physical world based on natural causes. After the fall of the Western Roman Empire, knowledge of Greek conceptions of the world deteriorated in Western Europe during the early centuries (400 to 1000 CE) of the Middle Ages but was preserved in the Muslim world during the Islamic Golden Age. The recovery and assimilation of Greek works and Islamic inquiries into Western Europe from the 10th to 13th century revived natural philosophy, which was later transformed by the Scientific Revolution that began in the 16th century as new ideas and discoveries departed from previous Greek conceptions and traditions. The scientific method soon played a greater role in knowledge creation and it was not until the 19th century that many of the institutional and professional features of science began to take shape.

Modern science is typically divided into three major branches that consist of the natural sciences (e.g., biology, chemistry, and physics), which study nature in the broadest sense; the social sciences (e.g., economics, psychology, and sociology), which study individuals and societies; and the formal sciences (e.g., logic, mathematics, and theoretical computer science), which study abstract concepts. There is disagreement, however, on whether the formal sciences actually constitute a science as they do not rely on empirical evidence. Disciplines that utilize existing scientific knowledge for practical purposes, such as engineering and medicine, are described as applied sciences.

Science is based on research, which is commonly conducted in academic and research institutions as well as in government agencies and companies. The practical impact of scientific research has led to the emergence of science policies that seek to influence the scientific enterprise by prioritizing the development of commercial products, armaments, health care, and environmental protection.

Refresh with new selections below (purge)

Selected article

The accelerator chain of the Large Hadron Collider (LHC)
ATLAS (A Toroidal LHC ApparatuS) is one of the five particle detector experiments (ALICE, ATLAS, CMS, TOTEM, and LHCb) being constructed at the Large Hadron Collider, a new particle accelerator at CERN in Switzerland. It will be 45 metres long and 25 metres in diameter, and will weigh about 7,000 tonnes. The project involves roughly 2,000 scientists and engineers at 151 institutions in 34 countries. The construction was completed in 2008. The experiment is expected to measure phenomena that involve highly massive particles which were not measurable using earlier lower-energy accelerators and might shed light on new theories of particle physics beyond the Standard Model.

The ATLAS collaboration, the group of physicists building the detector, was formed in 1992 when the proposed EAGLE (Experiment for Accurate Gamma, Lepton and Energy Measurements) and ASCOT (Apparatus with Super COnducting Toroids) collaborations merged their efforts into building a single, general-purpose particle detector for the Large Hadron Collider. The design was a combination of those two previous designs, as well as the detector research and development that had been done for the Superconducting Supercollider.

Selected image

A Persian astrolabe, used for determining the time at both day and night.
Credit: Andrew Dunn

An 18th Century Persian astrolabe used for determining the time at both day and night. The points of the curved spikes on the front rete plate mark the positions of the brightest stars, the name of each star being labeled at the base of each spike. The back plate, or mater, is engraved with projected coordinate lines. From the Whipple Museum of the History of Science collection.

Selected biography

Barbara McClintock (June 16, 1902 – September 2, 1992) was a pioneering American scientist and one of the world's most distinguished cytogeneticists. McClintock received her PhD in botany from Cornell University in 1927, where she was a leader in the development of maize cytogenetics. The field remained the focus of her research for the rest of her career. From the late 1920s, McClintock studied chromosomes and how they change during reproduction in maize. She developed the technique to visualize maize chromosomes and demonstrate genetic recombination by crossing-over during meiosis—a mechanism by which chromosomes exchange information. She produced the first genetic map for maize, and she demonstrated the role of the telomere and centromere. She was awarded prestigious fellowships and elected a member of the National Academy of Sciences in 1944.

Did you know...

Associated Wikimedia

The following Wikimedia Foundation sister projects provide more on this subject:






Learning resources



Purge server cache